On higher rank coisotropic A-branes
نویسندگان
چکیده
منابع مشابه
Anomalies and Graded Coisotropic Branes
We compute the anomaly of the axial U(1) current in the A-model on a Calabi-Yaumanifold, in the presence of coisotropic branes discovered by Kapustin and Orlov. Our results relate the anomaly-free condition to a recently proposed definition of graded coisotropic branes in Calabi-Yau manifolds. More specifically, we find that a coisotropic brane is anomaly-free if and only if it is gradable. We ...
متن کاملCoisotropic D8-branes and Model-building
Up to now chiral type IIA vacua have been mostly based on intersecting D6-branes wrapping special Lagrangian 3-cycles on a CY3 manifold. We argue that there are additional BPS Dbranes which have so far been neglected, and which seem to have interesting model-building features. They are coisotropic D8-branes, in the sense of Kapustin and Orlov. The D8-branes wrap 5-dimensional submanifolds of th...
متن کاملHigher rank Einstein solvmanifolds
In this paper we study the structure of standard Einstein solvmanifolds of arbitrary rank. Also the validity of a variational method for finding standard Einstein solvmanifolds is proved.
متن کاملOn higher rank numerical hulls of normal matrices
In this paper, some algebraic and geometrical properties of the rank$-k$ numerical hulls of normal matrices are investigated. A characterization of normal matrices whose rank$-1$ numerical hulls are equal to their numerical range is given. Moreover, using the extreme points of the numerical range, the higher rank numerical hulls of matrices of the form $A_1 oplus i A_2$, where $A_1...
متن کاملGENERALIZED HIGHER-RANK NUMERICAL RANGE
In this note, a generalization of higher rank numerical range isintroduced and some of its properties are investigated
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2012
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2011.10.003